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The expansion of an arbitrary two-dimensional solution of the linearized stream- 
function equation in terms of the discrete and continuum eigenfunctions of the Orr- 
Sommerfeld equation is discussed for flows in the half-space, y E [0, co). A recent result 
of Salwen is used to derive a biorthogonality relation between the solution of the 
linearized equation for the stream function and the solutions of the adjoint problem. 

For the case of temporal stability, the orthogonality relation obtained is equivalent 
to  that of Schensted for bounded flows. This relationship is used to carry out the 
formal solution of the initial-value problem for temporal stability. It is found that the 
vorticity of the disturbance a t  t = 0 is the proper initial condition for the temporal 
stability problem. Finally, i t  is shown that the set consisting of the discrete eigen- 
modes and continuum eigenfunctions is complete. 

For the spatial stability problem, it is shown that the continuous spectrum of the 
Orr-Sommerfeld equation contains four branches. The biorthogonality relation is 
used to derive the formal solution to the boundary-value problem of spatial stability. 
It is shown that the boundary-value problem of spatial stability requires the stream 
function and its first three partial derivatives with respect to  x to be specified at  x = 0 
for all t .  To be applicable to practical problems, this solution will require modification 
to eliminate disturbances originating a t  x = 03 and travelling upstream t o  x = 0. 

For the special case of a constant base flow, the method is used to calculate the 
evolution in time of a particular initial disturbance. 

1. Introduction 
Recent calculations of the discrete eigenmodes of the Orr-Sommerfeld equation 

(Jordinson 1971; Mack 1976; Corner, Houston & Ross 1976; Murdock & Stewartson 
1977) have indicated that, for a given Reynolds number and wavenumber (frequency), 
the Orr-Sommerfeld equation for Blasius flow has only a finite number of discrete 
temporal (spatial) eigenfunctions. Since a finite set of functions cannot be complete, 
these calculations raised the question of how to expand the stream function of an 
arbitrary disturbance in terms of the normal modes. These authors suggested that, in 
addition to the finite discrete spectrum which they found, there is a continuous 
spectrum. 
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I n  part 1 (Grosch & Salwen 1978a), we dealt with the existence of the continuous 
spectrum and the form of the related eigenfunctions for bot,h the temporal and spatial 
problems. We showed that the Orr-Sommerfeld equation, for any mean shear flow 
approaching a constant velocity in the far field, possesess a continuous spectrum; we 
gave formulae for the location of the temporal and spatial continua in the complex 
wave-speed plane; and we calculated the temporal continuum eigenfunctions for some 
particular cases. In  this paper, we turn our attention to the use of the discrete and 
continuum eigenfunctions of the Orr-Sommerfeld equation to  calculate the tem- 
poral or spatial evolution of an arbitrary solution of the linear disturbance 
equations. 

I n  a recent critique of the application of stability theory to the prediction of tran- 
sition, Berger & Aroesty (1977) point out that, on the basis of the limited experimental 
evidence that is available, the coupling of free-stream disturbances to disturbances 
in the boundary layer appears to be extraordinarily weak and extremely selective in 
frequency and wavenumber. Mack (1977) makes the same point in a different way. 
He points out that, ‘if there were no disturbances [inside the boundary layer], there 
would be no transition and the boundary layer would remain laminar. Consequently, 
it is futile to talk about transition without in some way bringing in the disturbances 
which cause i t . .  .’. Mack adds, ‘. . . the precise mechanism by which, say, free stream 
turbulence, sound, and different types of roughness cause transition remains to be 
discovered’. 

The most detailed discussion of this problem appears to be that of Obremski, 
Morkovin & Landahl (1969). They consider various possible mechanisms by which 
sound or vorticity waves in the free stream might interact with the boundary layer 
and cause transition. On the basis of the available experimental evidence, they con- 
clude that only a small portion of the external disturbance field excites Tollmien- 
Schlichting (TS) waves in the boundary layer and a significant portion appears to 
travel within the boundary layer with little or no interaction. The (unstated) con- 
clusion seems to be that the mechanism which couples free-stream disturbances to a 
boundary layer and, thereby, initiates transition is unknown. 

The central problem here is the solution of the general initial and boundary-value 
problems for disturbances to boundary-layer flow: how, given the form of the dis- 
turbance at  a time t = 0, to find its variation with time and how, given the form of the 
disturbance at  all times on a plane, x = 0, perpendicular to the boundary layer, to  
find out the way in which it propagates downstream. I n  this paper, we approach these 
problems, in the approximation obtained by assuming parallel flow and linearizing 
with respect to the disturbances, by expressing the solution as a sum over the discrete 
normal modes plus an integral over the continuum eigenfunctions of the Orr-Sommer- 
feld equation. If the (discrete plus continuum) eigenfunctions form a complete set, 
this approach will yield a valid solution of the problern. 

Starting with Haupt (1912), a number of authors have dealt with the completeness 
of the set of temporal eigenfunctions in a bounded domain. Haupt showed that the 
eigenfunctions for two-dimensional disturbances to plane Couette flow form a complete 
set and Schensted (1960) proved completeness for the eigenfunctions for two-dimen- 
sional disturbances to plane Poiseuille flow and for axisymmetric disturbances to 
Poiseuille flow in a circular pipe. Yudovich (1965) and DiPrima & Habetler (1969) 
have proved the completeness of the eigenmodes for a large class of bounded flows. 
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We are unaware of any work on the completeness of the spatial eigenfunctions or, 
previous to this paper, on the completeness of the temporal eigenfunctions in an un- 
bounded domain. 

I n  3 2 we formulate the stability problem for two-dimensional disturbances to a 
parallel shear flow, U(y), 0 < y < co, in terms of the linearized equation for the stream 
function and boundary conditions. We next formulate the adjoint problem. A new 
result of Salwen (1979) is then used to derive a pseudocontinuity relation involving 
solutions of the linearized equation for the stream function and the adjoint solutions. 
This relation is then used to find the general biorthogonality condition for wave-like 
disturbances to the flow. The biorthogonality relation is specialized to the cases of 
temporal and spatial stability. The orthogonality relation for the temporal stability 
problem is that derived by Schensted (1960) and discussed by Reid (1965). 

The temporal stability problem is considered in detail in 3 3. The solution is Fourier 
analysed with respect to x. Then the formal solution of the initial-value problem for 
the temporal stability of a two-dimensional disturbance to a parallel shear flow is 
expressed as an expansion in terms of the eigenfunctions. The expansion coefficients 
are determined by inner products between the initial disturbance and the eigenfunc- 
tions of the adjoint equation. We show that the disturbance vorticity a t  t = 0 is the 
proper initial condition for the temporal stability problem. 

I n  3 4 we examine the question of the completeness of the set of expansion functions 
for the temporal stability problem. Very recently, Gustavsson (1979) has treated the 
temporal initial-value problem by using Fourier-Laplace transforms. He finds poles 
in the transform plane which correspond to the discrete TS modes and a branch cut 
which corresponds to the continuous spectrum. We show in this section that the 
Fourier-Laplace transform solution of Gustavsson is identical to our Fourier trans- 
form, eigenfunction expansion solution for the initial-value problem of temporal 
stability. We therefore conclude that our expansion set is complete. 

The spatial stability problem is considered in detail in 9 5. The solution is Fourier 
analysed in t. The formulae for the four branches of the continuous spectrum of the 
spatial stability problem are derived and discussed. The formal solution of the 
boundary-value problem for the spatial stability of a two-dimensional disturbance 
to a parallel shear flow is expressed as an expansion in terms of the spatial eigenfunc- 
tions. The expansion coefficients are determined by inner products between the 
boundary conditions a t  x = 0 and the eigenfunctions of the adjoint equation. The 
boundary conditions at  x = 0 are discussed. We have not yet been able to prove 
completeness for the set of expansion functions of the spatial stability problem. 

I n  § 6, we apply the results of 3 3 to  the simple case of a constant base flow. I n  this 
case, we find the eigenfunctions and calculate and discuss the temporal evolution of 
a particular initial disturbance. 

2. The linearized, two-dimensional Navier-Stokes equations : the 
bi-orthogonality relation 

2.1.  Formulation of the problem 

The basic flow under consideration is a parallel shear flow, U(y), in the semi-infinite 
region, y 2 0. We are concerned with the temporal or spatial development of an 
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'infinitesimal', two-dimensional disturbance to  this flow, (u(x,  y, t ) ,  w(x, y, t ) ,  0). I n  
this case, u and v can be expressed in terms of a stream function, Y(x, y, t ) ,  by 

= aY/ay, = -m/a .x ,  (I), ( 2 )  

and the linearized Navier-Stokes equations reduce to  a single partial differential 
equation, 

where 

I n  addition, Y must satisfy two boundary conditions a t  y = 0, 

%I = - 9(x, 0) t )  = 0 
ax X , O ,  t 

As a consequence of ( 7 ) ,  Y must satisfy boundary conditions a t  infinity, 

(4) 

For fixed x and t ,  Y(x, y, t )  belongs to a manifold, M ,  of functions, $(y), satisfying 

and 

$ - - -  d$ a'# d3$ continuous on [0, a), 
' d y '  dy2' dy3 '  

$(O) = 0, #'(O) = 0 (11) 

The continuum eigenfunctions which will be discussed in $93  and 5 do not satisfy 
(12). Instead they belong to a manifold M' 2 M of functions satisfying (9)-( 11) and 
a weakened condition, 

#(Y) and dg bounded in II0,co). (13) 

We define an inner product, 

in M .  The asterisk denotes the complex conjugate. This inner product is defined for 
the full Hilbert space of functions satisfying (12) and, in that space, has the usual 
properties of inner products. 
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2.2. T h e  adjoint problem 

For functions f ,  gE M we define the adjoint, 2+, of 2 in the usual way by 

~ ~ ~ { f i ~ , Y . t ) i * ~ ~ + 8 ( X , Y ) t ) } d X ~ Y d t  

= / / / { 2 f ( x ,  y ,  t)}* {g(x, y ,  t ) }  dxdy dt + boundary terms. (15) 

The definition of the adjoint used here yields an adjoint operator which is identical to 
the formal adjoint (Friedman 1969, pp. 2, 3). 

An adjoint stream function, %(x, y ,  t ) ,  is a solution of the adjoint equation (with 
U* = U ) ,  

m (it a~ m a t ?  i - 
Y+Y = -+u- V2Y+2--+-V4Y = 0, 

d y  axay R 

with the boundary conditions at  y = 0, 
N 

and the finiteness condition 

H 

As above, equation (1 9) implies that Y must satisfy boundary conditions 

When, as below, we look for solutions to the linearized stream-function equation 
(3) which have a wave-like behaviour in x and t ,  equation (3) reduces to the Orr- 
Sommerfeld equation and equation (16) reduces to  the adjoint Orr-Sommerfeld 
equation. Our adjoint Orr-Sommerfeld equation is the complex conjugate of the 
adjoint equation derived by Schensted (1960) and quoted by Reid (1965). The reason 
for this difference is that we define the inner product in the usual way, (14)) while 
Schensted's definition of the inner product ( f ,  g) involves f instead off *. 

2.3. Bi-orthogonality 

Salwen (1979) has shown that the solutions of the linearized, three-dimensional 
Navier-Stokes equations, u, p and the adjoint solutions ii, fi satisfy a 'continuity' 
equation 

(20) 
aP - + V .  J = 0, 
at 

and, as before, the asterisk denotes a complex conjugate. 
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For the two-dimensional disturbances considered here we will introduce two new 
inner products. Let Y be any solution of the original problem and ? be any solution 
of the adjoint problem, then define 

and (24) 

with J ,  the x component of J. Using (22) and expressing u, p and fi, f5 in terms of Y 
and ?, it can be shown that 

a2+*ay a+* a v ]  
Y+2-- -  2-- 

ax ag ay ay ax ay 
- a 3 \ r  a+*azY a Z + * a ~  a39* 

= Iom { [ Y* ax3 - ax ax2 + ax2 ax - ax3 UK 
- p*- a v  + a2?* -Y] 

at ax atax 

The form of these inner products has been determined by the equations for the stream 
function and the adjoint stream function. However, we can use equations (23) and 
(25) to calculate inner products (f,g) and [If,g], evaluated a t  fixed x and t, of any 
functionsf(x, y, t )  and g(x, y, t ) .  

It is straightforward to show that (f, g )  is defined for the full Hilbert space of func- 
tions which satisfy equation (7)  and, in that space, has the usual properties of inner 
products. On the other hand, [ f , f j  is not positive definite. This is due to  the fact that  
i t  is possible to  have wavelike solutions to equation (3) which propagate in either the 
upstream ( - x) or downstream ( + x) direction. 

With these definitions it is easy to show that 

a -  a 
at -cr, Y) +%@, = 0, 

for any solutions of the original and adjoint problems. 
If Y and ’? are wave disturbances of the form 

= #, ,(y) eW%-u’t) 
a’w 

w 

‘Fa,,, = Jaw(  y) ei(az-wt), 

equation ( 2 6 )  reduces to  
u ..d 

(w’ - w * )  (yac0, yatw,) = (a’ - a*) [[yaw, ~ratw.j. (29) 

This equation may be used to derive bi-orthogonality relations for the eigenfunctions 
of both the temporal and spatial stability problems. 

For the temporal stability problem, a is real and given and a’ equals a. The ortho- 
gonality relation for the temporal stability problem is then 

(0’ - @*) (Yau, Yaw,) = 0,  (30) 

so the solutions of the temporal stability problem and the adjoint solutions are ortho- 
gonal unless (0‘ = Q*. The orthogonality condition, equation (30)) can be recognized 
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as being essentially equivalent to that derived by Schensted (1960, p. 27, equation 
(2.2.3)), and discussed by Reid (1965). The only difference is that Schensted’s adjoint 
solution is the complex conjugate of ours. 

In  the case of spatial stability, w is real and given and w‘ = w and the orthogonality 
relation is - 

(a’ -a*) [Yaw, Ya.,] = 0. (31) 

Thus, unless a’ = a* the spatial eigenfunctions and adjoint eigenfunctions are ortho- 
gonal with the inner product defined by equation (25). 

3. The temporal stability problem 
3.1. T h e  eigenvalues and. eigenfunctions 

For the temporal stability problem we modify the finiteness condition, equation (7) ,  to 

This ensures that the Fourier integral expansion of Y, 

V X , Y ,  t )  = Srn @AY, t )  eiaz@, 
- -co 

exists. If we assume that @a is of the form 

@ a h ,  t )  = $a(Y) e-iot, 

then 9, is a solution of the Orr-Sommerfeld equation 

with 
d2 

a - dy2 
c = w / a ,  L = --$, 

(33) 

(34) 

Similarly we assume that the adjoint solution, +, also satisfies equation (77 ,  thus 
ensuring that the Fourier integral expansion of +, 

00 

$(x, y ,  t )  = 1 $a(y,  t )  eiaxda, 
- m  

(37) 

exists. It is assumed that $, is of the form 

$ a ( ~ >  t )  = $a(y) e-iw*t, (38) 

with 6, the solution of the adjoint Orr-Sommerfeld equation 
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if #a and $a are in M ,  or the weaker condition 

H .  Salwen and C .  E.  Grosch 

#a, $A, $a, $A bounded as Y + 00, (43) 

if $a and $a are in M’. Those eigenfunctions which belong to M will be called discrete 
eigenfunctions. Those which belong to M’ but not M will be called continuum eigen- 
functions. 

It has been found (Mack 1976; Grosch & Salwen 1975, 1978a) that, in general, 
there is a finite number of discrete eigenfunctions, {#arn(y)} with eigenvalues {warn} 
and a set, ( f iak } ,  of continuum eigenfunctions with kigenvalues {wak} which depend 
continuously on a real parameter, k, in the range [0, a]). (Note that the k of this paper 
is equal to ak of part 1.) 

The number of discrete modes, which we shall denote by N ( a ) ,  depends not only on 
u but also on R and on the form of U(y) and can, in some cases, be zero. The adjoint 
eigenfunctions also include a finite set, {$am}, of discrete eigenfunctions and a con- 
tinuum, {$ak),  with eigenvalues {ozrn} and {wzk} ,  respectively (see discussion following 
(30)). For a given k, $ak and f i a k  vary like a linear combination of e*ikg as y -+ CO. 

We therefore find that 

and that, for any square-integrable f,  

Inner products between continuum functions, such as $mk’> do not exist in the 
ordinary sense but are definable in terms of the Dirac &function (Lighthill 1960, pp. 
10-2 1 ) . 

The discrete eigenvalues must be searched for (Mack 1976), but the continuum 
eigenvalues follow from the asymptotic form ($hak, qJak - linear combination of e*ikv) 

of the eigenfunctions as y -+ co and U -+ U, = U(co),  

( - k2- a y -  (iaBU, - iBw,,) ( - k2- a2) = 0, (46a) 

( - k2 - a2)’ + (iaRU, - i h h z k )  ( - k2 - 01.’) = 0, (46b) 

work = -iR-’(k2 + a2 f iaRU1). (47) 

so that both equations yield 

We also find that no continuum eigenvalue is also a discrete eigenvalue. Then 

and 

With proper labelling and normalization, it is then possible to choose the eigenfunctions 
in such a way that 

<$an, $ant> = Jnnr, (49a) 

<+en, $av> = (6akT #an,> = 0, (49b) 

and (+ek, $av> = a ( k - k ’ ) .  (49c) 
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3.2. Expansion of an arbitrary disturbance 
I f  the eigenfunctions form a complete set, then, for any time t ,  we may expand 
$,(y, t )  as a linear combination, 

of those eigenfunctions. To find the coefficients {a,} and {ak} we may make use of (49)  
to  take inner products 

N ( a )  
<$an, $a(y,  t ) )  = c an,(a, t )  a n ,  = an(&, t ) ,  (51a) 

n’=l 

We then find that 

And, similarly, 

where 

If the discrete and continuum eigenfunctions form a complete set, then equation 
(55 )  constitutes an expansion of the stream function of an arbitrary disturbance in 
terms of the discrete (Tollmien-Schlichting) and continuum wave solutions, 

$an@) exp and $ak(Y) W a k t ) l t  

of the disturbance equation, (3), with coefficients determined by the initial form of 
the disturbance Y(x,y,O). I n  the next section we will show that the discrete and 
continuum eigenfunctions are a complete set. 
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One interesting and significant result of this calculation is that the initial distribution 
of vorticity, 

is sufficient information to determine the coefficients A,(a) and A,(a) and, therefore, 
the subsequent development of the disturbance. 

C&, y) = a x ,  y, 0) = [av/ax - aqay lZ , , ,  = - v2wx,  y, O ) ,  (57) 

4. Completeness of the temporal expansion functions 
Gustavsson (1979) has carried out a formal solution of the initial-value problem of 

temporal stability for three-dimensional disturbances. He uses the same co-ordinate 
system as we do with the addition of the x co-ordinate in the cross-stream direction. 
The formal solution is obtained by taking Fourier transforms in both x and x and a 
Laplace transform in t ,  formally solving the Orr-Sommerfeld equation in the trans- 
form space, and formally inverting the transforms. If we eliminate the z variation of 
Gustavsson’s solution and his Fourier transform in x (replacing his k by la / )  the two 
solutions should be identical. Both Gustavsson and we express the solution in physical 
space as an inverse Fourier transform over a, the transform variable in the x direction. 
In  order to show that these two methods yield identical results it is therefore neces- 
sary to show that his formal solution in Fourier space, 3, as given in (G13),7 is equal to 
the factor in curly brackets in our equation (55 ) .  

I n  order to do this we must first translate Gustavsson’s notation into our notation. 
Setting ,8 = 0, after (G3) it is easily seen that we have the following correspondence: 

This paper Gustavsson 

Y iv/a 
k 
is 

k U 

I4 

u, 1 

W 

in (G3) and thereafter. 
Gustavsson gives the formal solution in Fourier space in equation (GI 8). It consists 

of a sum of the residue values a t  the poles plus a contour integral along a branch cut. 
Using the definitions of W as the Wronskian, the D j ,  given after (G6), and the q5j, 
equation (G7), it is quite straightforward to show that the residue, R,, a t  a pole s, is 

R” = ( e sv t /W)W(S- - , )  [ads) $,(y,s)+a,(s) q52(Y,S)l}. (58) 
S+SY 

Therefore the residue consists of a linear combination of and c j 2 ,  the solutions of the 
Orr-Sommerfeld equation that approach zero as y -+ co, i.e. they satisfy (G4) and (42). 
At s = s,, and $2 satisfy the usual eigenvalue condition at y = 0 for the discrete 
modes of the Orr-Sommerfeld equation, condition (Gb) (at the bottom of page 1603). 
This linear combination thus satisfies (41). Therefore the residue a t  s, is proportional 
to our discrete eigenfunction $Jy) with eigenvalue uav, and 

esut = exp ( - iu,,t). 

It is well known (Coddington & Levinson 1955, p. 101, problem 19) that [DJW]* ,  
the complex conjugates of the functions used in (G6), are solutions of the adjoint 

t I n  order to simplify reference to the equations in Gustavsson’s paper we will hereafter use 
the prefix G. Page references are also to Gustavsson’s paper. 
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equation (39). It can be seen from the form of (Gl l )  and the definition of our inner 
product (23) that 

(59) 

so that the coefficient of in the residue is the inner product of some solution of 
the adjoint equation with #(y, 0). Finally, some straightforward, but tedious, algebra 
shows that the particular linear combination of the 0; involved satisfies the boundary 
conditions (41) and (42) and therefore is a multiple of our We thus find that the 
residue at  sv is 

with d,, independent of y an~d Av(a)  given by (54a). Before determining d,,, we turn 
to the contribution of the branch cut. 

Using the fact that our w = is, it is clear from (G14) that the branch cut in the 
complex s plane is our continuous spectrum in the complex o (or c )  plane and that the 
branch point, ,u = 0, corresponds to the limit point of our continuous spectrum at 
c = U,-ia2/R, with U, = I. The function F(a,  k; y) in ((218) is, by (G17) and (G19), 
a linear combination of the solutions of the Orr-Sommerfeld equation which are, as 
y -+ CO, asymptotic to ecay, e-’iky, and e+{h-y. It can be shown, using (Gig), (G20), (G21), 

(60) Rv = davAu(a)  $aueXP (-‘oavt)) 

(61) 
and (G22), that 

F(a,  k; 0) = (dF/dy)y,o = 0, 

and SO F(a, k; y) is some multiple of our continuum eigenfunction #,,(y). Further, it 
is obvious that, in ( 5 5 ) )  

exp ( - iwakt) = exp ( - iaUlt) exp ( - (a2 + k2) t /R)  (62) 

in ((218) with Ul = 1. 
Just  as for the discrete modes, the {a!}, v = 2 , 3 , 4 ,  in (Gal)  are the inner product of 

some solutions of the adjoint equation with &. Using the definition of the Em, in 
(G22) and the definitions of the Ym as given in the next to last paragraph on page 1604, 
some algebra shows that the particular linear combination satisfies the boundary 
conditions a t  y = 0 and so the inner product in (G20) is a multiple of the inner product 
of our continuum adjoint, $aak(y), with the initial condition. Therefore, the integral 
term in (GIs) is 

I = som da,A,(a) $ak(Y) exp ( -imakt) dk, (63) 

with Ak(a) given by (54b) and d,, independent of y. Gustavsson’s result (Gl8)  thus 
takes the form (in our notation) 

Both Gustavsson and we may choose our initial condition arbitrarily, provided that 
the various integrals of this function with the adjoint functions exist. If we choose the 
initial condition that +,(y, 0 )  is one of the discrete eigenfunctions, say $,wL(y), then 
in ( 5 5 )  

I n  Gustavsson’s formulation (63) we have 

&(a) = s,,, A,(a) = 0. (65% b) 

d,,A,(a) = cYvm, Ak(Z) = 0. (66a,  b)  

We thus see that a,, = 1. (67) 



456 H .  Salwen and C .  E.  Grosch 

If we then choose the initial condition 

J k-E 

a similar argument shows that a,, E 1. (69) 

Substitution of d,, = d,, = 1, (67) and (69)) makes (64), derived from Gustavsson's 
solution, identical with the curly bracket in our expansion solution ( 5 5 ) .  We have thus 
shown that the formal solution obtained by Gustavsson from the Fourier-Laplace 
transform is identical, tern1 by term, to our formal expansion solution. 

Since any square-integrable solution possesses a Fourier-Laplace expansion, we 
have shown that our expansion (55) is complete whenever it is valid to separate the 
Fourier-Laplace transform solution into a sum over the poles plus an integral over 
the branch cut - that is, whenever the sum over the poles (discrete eigenvalues) 
converges. This is, of course, also the condition for the validity of Gustavsson's 
solution. 

For the Blasius boundary layer, the numerical evidence (Mack 1976) indicates that, 
at a given R and a, the number of discrete modes isJinite, so that the sum over the 
poles is a finite sum. If this is so, then the above condition is certainly satisfied and our 
expansion fimctions form a complete set. 

We have shown that the Fourier-Laplace transform result and the eigenfunction 
expansion result are different forms of the same solution of the initial-value problem 
to be chosen according to convenience in a particular case. The eigenfunction expansion 
formulation gives explicit formulae ( M a ,  b )  to calculate the expansion coefficients. 
This allows one to calculate the amplitudes of the discrete modes (TS modes) and the 
continuum functions, given the initial distribution of vorticity. 

5. The spatial stability problem 
5. I. The eigenvalues and eigenfunctions 

The finiteness condition, equation (7)) is modified for the spatial stability problem to 

This ensures that the Fourier integral expansion of 'Y, 

T(x, y, t )  = J ~- $Jx, y) e--iwtdw 
- m  

exists. If we assume that $w is of the form 

then $w is the solution of the Orr-Sommerfeld equation 

with La given by (36). 



T h e  continuous spectrum of the Orr-flommerfeld equation. Part 2 45 7 

Similarly, we assume that the adjoint solution, !k, also satisfies equation (7"), thus 
ensuring that 

exists. We assume that +W(x, Y )  = 6 d Y )  eia*z* (74) 

Then 6, is the solution of the adjoint Orr-Sommerfeld equation 

dU d (L;. + iR [ (a*U - w )  La, + 2a*- -]] 6, = 0. 
dY dY 

The boundary conditions are 

$,(O) = $30)  = $m) = &(O) = 0,  

and $W+$i-+qJ, + & - t o  as y+00, 

if $W and 6, are in M ,  or 

(75) 

(76) 

(77) 

$,, $:, $,, 6; boundedas y -+co ,  (78) 

if $, and 6, are in M'.  As above, the eigenfunctions which belong to M are the discrete 
eigenfunctions and those that belong to M' but not M are.the continuum eigen- 
functions. 

Jordinson (1971)) Corner, Houston & Ross (1976), andMurdock & Stewartson (1977) 
have shown that there is only a finite set of discrete eigenfunctions, {$,,(y)}, with 
eigenvalues {a,,}. The set of discrete adjoint eigenfunctions, {6,n}, with eigenvalues 
{a:,} is also finite. The number of discrete modes, N ( w ) ,  depends on R as well as w and 
can be zero. 

In  part 1 we showed that, in an unbounded domain, the spatial stability problem 
always has a continuous spectrum. Since then we have discovered (Grosch & Salwen 
1978b), that the spatial continuum of part 1 is only one branch of a four-branched 
spatial continuum. It is quite easy to show the existence of the four branches of the 
spatial continuum. We look for solutions to equations (72) and (75), $,k(y) and q?,k(y), 
for a given real k, which vary like efikv as y + 00 (the k used in discussing the spatial 
continuum in part 1 is 2/R times the k used here). Noting that, as y -+ 00, U -+ U,, a 
constant, and U',  U" -+ 0, we have 

( -a2-k2)(  -a2-k2-kRU1+iwR) = 0, 

( - a*2 - k2)  ( - a*2 - k2 + ia"RU1- iwR) = 0. 

(79a) 

(79b) and 

(Note that equations (79a and b )  are complex conjugates.) 
It is obvious that there are four roots, {aj}, j  = 1, . . . ,4, with al and a2 the roots of 

+ iRU1aj + k2 - iwR = 0 (80) 

and a3 = ik, a4 = -ik. W a ,  b )  

The eigenvalue a,, the root of equation (80) with positive real part, is the continuum 
eigenvalue discussed in part 1. As was discussed in part 1, the eigenfunctions of this 
branch of the spatial continuum are waves propagating in the downstream (+ x) 
direction and decaying in amplitude as they travel. In  the same way it can be shown 
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that a2, is the eigenvalue of a continuum eigenfunction which is a wave travelling in 
the upstream ( -x) direction and decaying as it travels. 

The free-stream speed, U,, can be taken to be unity for a boundary layer, wake, or 
free shear flow. I n  most cases of interest w/R < 1. It is easy to see that, with U, = 1, 
and o / R  < 1 ,  

= ( w / Y )  - w+( 1 T 7 )  F ( W p ) 2 / 7 3 1 +  o ( W 3 / ~ 2 )  (82) 

with 7 = (1 + 4kz /Rz ) ) .  (83) 

c j  = a j * W / ( a j 1 2 .  (84) 

Then as k -+ 0, a, x U+iR[(W2+k2) /R2] ,  (85 a)  

"2 x - w - iR[l+ (d+ k2)/R2],  (85b)  

c, x 1 - i[(d + k 2 ) / R 2 ] / ( o / R ) ,  F a )  

c2 X - (o/R)2+ i ( w / R )  [1+ (w2+ k2)/R2]; (86b)  

while, as k + a, a, M (wR/Bk) +ik, M - (X I ,  (87% b)  

c, x 02R/2k3-iw/k, c2 x -c,. (88a, b)  

Define, as usual, the phase speed ci by 

The damping rate, for the spatial eigenfunctions, is Im (a )  and the phase speed is 
Re (c). The equations given above show that the eigenfunctions on branch 2 of the 
spatial continuum, for boundary layers, wakes, and free shear flows, always have 
both a very large damping rate and a very small phase speed. This is in marked contrast 
to those of branch 1, which, as was shown in part 1, or can be seen from the above 
results, contains lightly damped eigenfunctions some of which have a very slow phase 
speed and some of which have a phase speed nearly equal to the free-stream speed. 

The spatial continuum eigenfunctions of branches 3 and 4 are standing waves in x 
because they vary like 

@9a, b )  

As in the temporal case, the inner products between the spatial continuum eigen- 
functions do not exist in the ordinary sense but can be defined as 6 functions. Then, 
with proper labelling and normalization, i t  is possible to choose the eigenfunctions 
such that (with the superscript i or j indicating the branch of the continuum) 

exp (ia,~) = exp ( - kx), exp (ia,x) = exp ( + kx). 

OA,, dwn,n = L,, (90a) 

uA,, $tin = ~4% $wnn = 0, (gob) 

and there are analogous expressions for the inner products in (90b)  and (9Oc). 
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5.2. Expansion of an arbitrary disturbance 
If the spatial eigenfunctions form a complete set, then, for any x ,  we may expand 

(92 )  

I n  order to find the coefficients {a,(w, x)} and {uf)(w, x)}  we use equation (90)  to take 
the inner products 

i=l SW 0 

N(w)  

n=l 

$w(x, Y 1 as 

$l-w(x, Y )  = c an(w, 4 $,n(Y) + c a t )@,  4 $$L(Y) 0%. 

Then 

and 

so that 

at)(@, x) = A t ) ( w )  exp (iackx), (95b)  

where A,(@) 5 an@, 0) = IIL, $w(o,Y)n, (96a)  

At)(@) = a p ( w ,  0) = @A, $,(o, Y)]. (96b)  

From equations (73) ,  (92 )  and (95 ) ,  we have the formal solution to the spatial stability 
problem for the two-dimensional, linearized Navier-Stokes equations 

+ i=l 2 S a 3 ~ t ) ( w ) $ ~ ~ ( y ) e x p ( i a c L x ) d k  0 I exp(-iwt)do. (97 )  

Define 
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and there is a similar expression for A t ) ( @ ) .  
This is the formal solution of the spatial stability problem for an arbitrarily imposed 

boundary condition at  x = 0. The boundary conditions which must be specified are 
the Fourier transforms, in time, of the stream function and its first three partial deri- 
vatives with respect to x, evaluated a t  x = 0. 

As it stands, this formal solution will not give a physically acceptable solution 
because, given an arbitrary "(0 ,  y, t )  and derivatives, disturbances which lie on all 
four branches of the continuum will be excited. Therefore the solution will contain, 
in addition to the waves propagating towards x = co and the standing waves whose 
amplitude decays towards x = co, waves propagating upstream from x = 00 and 
standing waves whose amplitude increases towards x =I co. 

A condition must be imposed that, for x > 0, all propagating disturbances are 
travelling in the positive x direction and all standing waves have amplitudes which 
decay in the positive x direction. It appears that this should be done by requiring that 
Y(0, y, t )  and its first three partial derivatives with respect to x be orthogonal to  all 
eigenfunctions on branches 2 and 4 of the continuous spectrum but we have not yet 
investigated the implications of imposing this condition on the disturbance stream 
function at x = 0. 

6. Application to the temporal development of a model flow 
In  this section, we apply the results of 9 3 to the simple base flow, 

U(y) = U, = constant, y 2 0, (100) 

which is a slip flow past a bounding plane a t  y = 0. Though the base flow velocity does 
not vanish a t  the boundary, we still require the disturbance velocity to be zero a t  
y = 0. Because of the simplicity of the base flow, the expansion functions are elemen- 
tary functions. I n  9 6.1, we find the expansion functions. I n  this case, there are no 
discrete eigenmodes; all of the eigenfunctions are continuum functions. 

In  8 6.2, we solve the the time development of a particular initial disturbance by 
expanding in terms of these eigenfunctions. The initial disturbance chosen is a periodic 
layer of vorticity confined to a plane parallel to  the (y = 0) boundary. Because of the 
simple form of the initial disturbance and the simplicity of the base flow, it is possible 
to  obtain the solution in closed form in terms of error functions. 
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6.1. The eigenfunctions 

Por the base flow of equation (100) the differential equation, (34), for the expansion 
functions becomes 

($-a2-iaR(Ul-c) (101) 

(In this case of constant U ,  4 must satisfy the same differential equation.) I n  addition, 
$ must satisfy (11) and (13); i.e. q5 and q5' must vanish a t  y = 0 and be bounded in 
[ O , c o ) .  Since elalu is unbounded, B = 0. To satisfy the boundary condition a t  the 
origin, we must then have 

$ = A[e+1U-coshpy+ Ialp-l~inhpy], (104) 

which is unbounded as y + co unless p is purely imaginary. The solutions are then 

(105) 
given by 

(47) 

( 106) 

A,, = k(k2+a2)-1(2/7+, (107) 

(108) 

p = i k ;  O < k < o o ,  

w,, = - iR-l(a2 + k2 + iaRUl), 

$,,(y) = fiaak(y) = Aak[(e-lalY - cos ky) + la1 k-lsin ky], 

where the normalization constant, 

is determined by the condition 

( f i a k ,  $aV)  = s(k - k'). 

I n  this case, where the cj5ak and are known explicitly, one may show directly 
that, for F (y )  any continuous, differentiable, square-integrable function in [0, co), 

thus confirming that the set of ($ak} is complete for functions in M ,  with P(0) = 0. 

6.2. The temporal evolution of an initial disturbance 

In  order to demonstrate the application of this expansion technique, we consider the 
particular initial disturbance 

- v2wx,  y, 0) = a x ,  Y, 0) = c o  exp (iaox) s(Y -Yo), (110) 

a periodic layer of vorticity a t  a distance yo from the boundary. Following $3.2,  we 
find that the stream function a t  any time will be given by 

where 
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FIGURE 1. For legend see opposite. 



The continuous spectrum of the Orr-Sommerfeld equation. Part 2 463 

It is easily seen, by substituting (1 10) into (1 12), that 

After using (106) and (107), for #aok, we find that each term in the integral is expres- 
sible as sums of error functions. The results are given in an appendix. From these 
results, it can be shown that, for t -+ 00 with y fixed, 

Y t-+ exp ( - a: t / R )  cos ao(x - Ult) x (function of y) (115) 

and, for y + co with t fixed, 

YP N exp ( - ao(y +yo)) cos ao(x - Ult) x (function oft). (116) 

It is clear that, even though the individual eigenfunctions used in the expansion 
oscillate with constant amplitude as y -+ 00, the wave packet behaves like e-aog as 
y-+aO. 

Figure 1 shows contour plots of the stream function for the disturbance, in a frame 
of reference moving with the free-streamvelocity, a t  six different times. We have chosen 
a, = 1.0 and y = 1.0 for the example shown here. Contours of the disturbance stream 
function have also been calculated for other combinations of values of a, and yo and, 
for these other values, the evolution of the disturbance in time is quite similar to that 
shown in figure 1. 

I n  figure 1 the ( + ) and ( - ) indicate the position of the maximum and minimum 
values of the stream function. These maximum and minimum values are given in the 
caption to the figure. The flow is counter-clockwise around a maximum ( + ) and clock- 
wise around a minimum ( - ). 

It is clear from this figure that the disturbance, which is a periodic vortex sheet a t  
t = 0, retains its identity as a periodic array for all time, but as time increases it 
diffuses, the strength decays, and the centres of the vortices drift away from the 
boundary a t  y = 0. 

We could, of course, generalize this model problem by considering an initial vorticity 
distribution in the y direction. We have not carried out this calculation because our 
intention in solving this model problem was to illustrate the expansion procedure and 
we do not think that it warrants further elaboration. 

FIGURE 1. Contours of the disturbance stream function for the model problem in a frame of 
reference moving with the free-stream velocity at six different times. I n  this example 5, = 1.0, 
a, = 1.0, and yo = 1.0. There are twenty contour lines on each plot. The values of Y on these 
contours are 0.95Ym,,, 0.85Ym,,, ..., -0.95Ym,. The ( + )  and ( - )  indicate the positions 
where Y = Ym,, and Ymin. Note ,that 'Irmi,, = -Y,,,. (a)  t /R  = Y,,, = 0.425. ( b )  
t /R  = Yms, = 0.212. ( d )  t /R  = 1.0, Y,,, = 0 . 2 2 8 ~  lo-'. 
( e )  t /R  = 5.0, Ymx = 0.108 x (f) t /R  = 10.0, 'Y,,,, = 0.383 x 

Ym,, = 0.359. ( c )  t /R  = 
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Appendix. Solution of the model problem 
I n  9 6 we showed that the stream function for the model problem is, equation (1 14), 

where $&Jy) is given by (106) and (107). Substituting for 
integral it is straightforward to  show that, with 7 = t /R ,  

and q5ar,k(yO) in this 

1 a74 
(&+a%) erfc (a7f) - - exp ( - $7) , 

Jn 

1 
= - [( 1 + 2a27 - az) e-azerfc (ad  - aZ/2a74) 
4a 

+ ( 1  + 2a27 + az) eaz erfc (a74 + aZ/2ad)  
- 4adn-8 exp ( - a27) exp ( - a2Z2/4a27)], 

2 
13(a, 7 , Z )  E - exp ( - a27) 

1 
4a2 

Sum [ (k2 + k a 2 ) 2 ]  sin kZ dk exp ( - k27) 
7T 

= - [(2a27 + az) eaz erfc (a74 + aZ/2ad)  

- (2a27 - az) ecaz erfc (a74 - aZ/2ad)],  (A 4) 
2 

14(a, 7,z) = - exp ( -a%) 
7T 

and, as usual, 

1 
4a3 
+ ( 1  - 2a27 - aZ) eaz erfc (a74 + aZ/2a74) 
+ 4a1-47~-4 exp ( - a27) exp ( - a2Z2/4a27)] ,  

-- - [( 1 - 2a27 + az) e-az erfc (ad  - aZ/2a74) 
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